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Abstract. In this paper we deal with two stationary loss queuing network location models. We analyze the
influence of filtering policies on the locational aspect of the problems. We assume that requests for service
are placed at nodes of a transportation network and they arrive in time as independent homogeneous Poisson
processes with different input rates. The considered policies only cover a given proportion of requests even
if there are idle service units. This proportion is stationary and fixed in advance and only depends on the
node where the request is originated. The objective is to find the location of the facilities together with the
filtering policy to be applied that minimize the expected total cost per unit time with respect to a given
cost structure. Properties and computational results are presented enabling the resolution of these problems
efficiently and showing the good performance of filtering policies in terms of both the overall operating
costs, and the demand that is served.
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Most of the times, in the real world, requests of any kind of service cannot be known
in advance since they are not deterministic. Patients requesting medical services, homes
damaged asking for emergency repair services, fires whose extinction need fire brigades,
incidents requiring police control. . . are typical examples of such situations. All these
cases share two characteristics: (i) In order to provide service, some kind of displacement
is required; and (ii) the actual instants of time when service is required are not known
beforehand. Thus the decision-maker who manages the design of these systems should
take into account, together with the optimization aspects, the stochastic behavior of the
system. The first issue that has to be considered is the effectiveness measure to be used:
maximizing the social satisfaction (minimizing average waiting time or maximizing the
throughput of the system . . . ) and/or minimizing the operating cost. The first criterion
looks for the equity and the second one for the efficiency of the system. “A priori”
these two approaches are non-equivalent, although each one of them can be desirable
depending on the perspective.



260 FERNÁNDEZ, HINOJOSA AND PUERTO

In this paper we consider the economic aspect of some location demand-responsive
problems that fall into the above framework. We study the location of service centers
with finite availability (finite number of service units or capacity) when the points where
requests may occur and demand rates are given. Previous approaches to these kind of
problems can be found in the literature (see e.g., Chiu and Larson, 1985; Frenk, Labbé,
and Zhang, 1993). In these papers the authors study localization properties assuming that
if a request for service arrives, and some service unit is idle, it is immediately dispatched to
serve the demand. If all the service units are busy the request is lost. Our goal is to extend
the analysis to more general policies that may reject a certain proportion of requests even
when some service unit is idle. This proportion is set in advance and fixed for all the
process. We prove results that show that when filtering (coverage/rejection) policies are
applied the global efficiency of the system is improved, both in percentage of served
demand and operating costs, while localization properties similar to those of Chiu and
Larson (1985) and Frenk, Labbé, and Zhang (1993) still hold. It is clear that for systems
without a backup unit, filtering policies may be sometimes unacceptable. However, there
are situations where these policies could be applied. Consider, for instance, the case of
a company for emergency repair services that receives requests of service coming from
different areas. The company can decide not to cover an area or to cover only a proportion
of the requests coming from this specific area if this would reduce the overall operating
costs. This is also the case of planes used to extinguish fires in mountains or national
parks. The high cost of dispatching a plane makes their use only acceptable when the
magnitude of the fire is large enough thus justifying the cost involved, while for normal
situations trucks are used. A different application to Computer Science can be found in
Xu, Righter, and Shantikumar (1992). Despite their importance these anticipated policies
have been hardly considered in the literature (some exceptions are Batta, 1988; Lippman,
and Ross, 1971; Carrizosa, Conde, and Muñoz, 1998). The reason is the mathematical
difficulty to handle these models.

We deal with loss queuing-location models where service centers with a finite
number of service units have to be located. It is assumed that requests for service
come from different populated areas and they arrive in time as independent homoge-
neous Poisson processes with different input rates. No queue is allowed and in addi-
tion, the system may reject a proportion of requests even when some service unit is
idle. Our goal is to find the coverage of the requests together with the locations of
the service centers so as to minimize the overall operating costs (both, travel costs
and rejection costs). The proportion of requests covered by each service center must
be set in advance and fixed for all the process, since the optimal locations of the ser-
vice centers depend on them. Thus, the resulting filtering (coverage/rejection) policies
are anticipated and stationary. We introduce decision variables to model the coverage
proportions of the requests coming from the different areas. Once these decision vari-
ables are set in the model, the actual requests of service are independent homogeneous
Poisson processes that are obtained by filtering the original ones with Bernouilli ran-
dom variables whose probabilities of success are the coverage proportions (decision
variables).
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Since the classical acceptance policies in loss queuing models are particular cases
of filtering policies the latter will outperform the former. By a similar argument dynamic
policies will do even better. Unfortunately, we are not aware of any analytical tool to
handle such policies, which justifies our approach. Other kinds of models could also be
used to handle the above examples (e.g., coverage models). However, in our opinion,
having different alternatives to handle a problem is more an advantage than a drawback.
In addition, note that our models do not only take into account distances and on-scene
service times, but also rejection costs. This supposes an important difference with “lim-
iting coverage-radius strategies”, that in our opinion are not appropriate when rejection
costs occur, like in the case of our first example. On the other hand, it is clear that dynamic
policies would be more appropriate to handle real life situations if they were available.
In this regard our policies can be considered as an incremental step towards better under-
standing of stochastic location models and as building blocks for future developments in
this area. Since no method can be readily applied to solve some of the potential applica-
tions that we mention, it is specifically in this context where these potential applications
are useful to illustrate the capabilities and disadvantages of our models.

In our analysis the model with one service center is first considered. This gives
insight to other models with more than one service center. The first model is solved
exactly and filtering policies are compared with other standard policies that do not allow
rejection. Second, we address a model with two service centers: a primary service center
where filtering is permitted and a secondary service center that assumes the remaining
proportion of requests not covered by the filtering in the primary center. The first model
may leave part of the requests uncovered whereas the second one guarantees the whole
coverage of the requests. Notice that since we do not allow queues any request that arrives
to any of the two service centers when all their service units are busy is lost. We develop
solution procedures for this second model based on a combination of enumerative and
iterative methods.

Although our approach is mainly algebraic we can also use it to highlight the
queuing insight into the problem. Note that loss queuing location models do not consider
set-up costs since in these models the number of service units are not decision variables.
However we will show how to perform a trade-off analysis to make strategic decisions
on the number of service units once the optimal operating costs and their coverage levels
are known for each number of units.

The results obtained in our computational experiments show that when filtering poli-
cies are used there is a considerable reduction in the overall operating costs. Additionally,
the number of requests that are actually served by the system increases substantially with
respect to the case when filtering is not applied. This is specially true for the model with
two service centers.

The paper is organized as follows. In Section 1 the mathematical formulation of the
model with one service center is presented. In Section 2 we derive localization results for
this model and we develop an algorithm, which allows us to solve efficiently the problem.
Section 3 includes an example, which shows the improvement of our model with respect
to the model without filtering. Section 4 deals with an extension of the model, in which
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we consider two service centers rather than one. Section 5 derives localization results and
develops a branch and bound procedure to solve the new model. In the last section we
report computational results for some randomly generated problems. We first compare
the performance of the two models and then we illustrate the capabilities of the models
in the process of strategic decision making. The paper ends with some conclusions and
an appendix where some technical details about the algorithms are described.

1. The model with one service center

We consider a demand-responsive service system in a region in which c mobile service
units are garaged at the same home location (service center). Customers requesting on-
scene service by a mobile unit come from different populated areas. Each area has its own
arrival rate and service time, related to the travel distance from the service center to the
area. Thus, the domain is modelled as a transportation network N = (V, A), where the
node set V (|V | = n) represents the populated areas and the edge set A the links between
them. Requests occur at the nodes of the network, being the arrival process from the
different nodes an independent homogeneous Poisson process. No queue is allowed. For
ease of presentation, we assume in the formulation that the service units are dispatched
to serve the requests. Nevertheless, there is no restriction in considering that the requests
are sent to the service center.

The standard policy consists of not serving only those requests that arrive when all
the service units are busy. In this paper we consider a filtering policy where a proportion
of requests are discriminated according to their provenance so that they are excluded in
advance even if the service center has some idle service units. The introduction of this
new filtering policy is justified in order to enhance the global efficiency of the system.

For i = 1, . . . , n, letλi ≥ 0 be the Poisson arrival rate of the requests that come from
node i (say i-requests), being the arrival process from the different nodes independent;
and let wi ≥ 0 be the mean time of on-scene service, which may depend on nodal location
i . If the service units are garaged at point z ∈ N , d(i, z) denotes the travel distance in N
from z to node i . Finally, let ϑ be the travel velocity.

Using this notation, the expected service time of an i-request is si (z) = wi +
βd(i, z)/ϑ , i.e. the mean time of on-scene service wi plus the travel time which is
proportional to the distance divided by the travel velocity d(i, z)/ϑ . This proportion is
determined by a travel factor β ≥ 1 (for instance β = 2 is a round trip factor). Any
served i-request induces a cost to the system proportional to the travel time given by
ri (z) = αβd(i, z)/ϑ where α > 0 represents the cost per unit travel time; and any non-
served i-request induces a cost r̂i ≥ 0. It is also assumed that we are considering a real
loss system where not all the r̂i = 0. Otherwise, the optimal policy would be not to serve
any request.

To deal with this model we introduce two kinds of decision variables z and xi , i =
1, . . . , n. Each xi stands for the proportion of covered i-requests i.e., request that are not
excluded in advance by the filtering policy. z is the location for the service center that we
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Figure 1. One service center with filtering policy.

are looking for. It is worth noting that covered requests need not be served, since queuing
is not allowed. Thus, covered requests that arrive when the system is busy are lost (see
figure 1). The goal is to find the location z of the service center and the proportions
x = (x1, . . . , xn) of requests to be covered that minimize the expected total cost per unit
time.

Obviously, if z ∈ N and x ∈ [0, 1]n are fixed the system behaves as a M/G/c/c
queue with arrival rate λ(x), mean service time s(x, z) and throughput ρ(x, z) given by

λ(x) =
n∑

i=1

λi xi ,

s(x, z) =
n∑

i=1

λi xi

λ(x)
si (z),

ρ(x, z) = λ(x)s(x, z) =
n∑

i=1

λi xi si (z).

The key point that validates our model is the fact that the filtering policy is anticipated and
stationary. This means that once the filtering policy is established the rate of arrivals
that are going to be covered/rejected is known for each node i and, thus, the arrival
process is never disrupted. Notice that we use the well-known fact that the result of
filtering a Poisson process with input rate λ, by a Bernouilli random variable with success
probability p, can be seen as a new Poisson process with input rate λp. This supposes
a great difference with a model where the rejection decision were taken dynamically,
which would be much more difficult to handle. Nevertheless, filtering policies can be
considered as an approximation to dynamic ones. The approximation is obtained by (1)
selecting a fixed number of time instants, (2) for each time instant estimating its input
process, and then (3) identifying the optimal filtering policy associated with each time
instant.
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Let �c(x, z) denote the probability that not all the service units are busy. It is
well-known (see e.g., Medhi, 1991) that in our model

�c(x, z) = 1 − ρ(x, z)c/c!∑c
k=0ρ(x, z)k/k!

.

The expected total cost per unit time is given by the sum of the cost of the served requests
plus the cost of the non-served requests. The expected number of i-requests per unit time
that receive service is λi xi�c(x, z) and the expected number of non-served i-requests
per unit time is λi (1 − xi ) + λi xi (1 − �c(x, z)), i.e. the expected number of rejected
(excluded) i-requests due to the filtering policy plus the expected number of “a priori”
covered i-request that arrive when all the service units are busy (lost requests). Then, the
expected total cost per unit time is:

F̂(x, z) = �c(x, z)
n∑

i=1

λi xi (ri (z) − r̂i ) +
n∑

i=1

λi r̂i . (1)

Since the term
∑n

i=1 λi r̂i does not depend on the decision variables (x, z) one can consider
equivalently the following objective function for the model:

F(x, z) = �c(x, z)(r (x, z) − r̂ (x)) (2)

where, r (x, z) = ∑n
i=1 λi ri (z)xi and r̂ (x) = ∑n

i=1 λi r̂i xi .
Therefore the model is formulated as:

min
x∈[0,1]n,z∈N

F(x, z) = �c(x, z)(r (x, z) − r̂ (x)). (3)

Hereafter and by similarity with the c-Server-Single-Facility-Loss-Median model (c-
SFLM) of Chiu and Larson (1985) or Frenk, Labbé, and Zhang (1993), we will call this
problem the Single-Facility-Loss-Median model with Filtering (SFLMF). We note in
passing that none of these models consider set-up costs since the number of service units
is fixed prior to the solution of the problem and thus is not a decision variable.

2. Localization results for the SFLMF problem and resolution approach

In this section we derive localization results for the SFLMF model. In order to prove
these results we introduce the following auxiliary problem for each fixed x̄ ∈ [0, 1]n:

min
z∈N

t(x̄, z) := (β/ϑ)
n∑

i=1

λi x̄i

λ(x̄)
d(i, z). (4)

It is worth noting that the objective function t(x̄, z) of Problem (4) is the expected travel
time for the feasible solution (x̄, z) of Problem (3). Therefore, Problem (4) is the well-
known Weber or median problem on a network N with respect to the set of existing
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facilities placed at the nodes of N (see e.g., Hakimi, 1964). In addition, in order to
simplify the notation we also introduce w(x̄) the expected on-scene service time,

w(x̄) =
n∑

i=1

λi x̄i

λ(x̄)
wi .

The optimization Problem (3) we are interested in is different from (4). However, we
prove in the next theorem that an optimal solution of (3) can be obtained among the
minimizers of t(x̄, z). This result extends the localization result for the c-SFLM model,
(see Theorem 2 in Chiu and Larson, 1985 or Lemma 1.1 in Frenk, Labbé, and Zhang,
1993).

Theorem 2.1. Let x̄ be a fixed nonzero vector in [0, 1]n . If z∗ solves problem minz∈N t(x̄,

z), then z∗ solves the problem minz∈N F(x̄, z).

Proof. We only need to show that d F(x̄,z)
dt(x̄,z) ≥ 0, ∀z ∈ N . First, observe that

d F(x̄, z)

dt(x̄, z)
= α�c(x̄, z)λ(x̄) + d�c(x̄, z)

dt(x̄, z)
(r (x̄, z) − r̂ (x̄)).

Recall that ρ(x̄, z) = λ(x̄)s(x̄, z) = λ(x̄)(w(x̄) + t(x̄, z)). Therefore, we can write the
above expression as

d F(x̄, z)

dt(x̄, z)
= α�c(x̄, z)λ(x̄) + d�c(x̄, z)

dρ(x̄, z)
λ(x̄) (α(ρ(x̄, z) − λ(x̄)w(x̄)) − r̂ (x̄)) .

Since d(1−�c(x̄,z))
dρ(x̄,z) ≥ 0 (see page 512 of Chiu and Larson, 1985), d�c(x̄,z)

dρ(x̄,z) ≤ 0. Besides,
α ≥ 0 and r̂ (x̄) ≥ 0 thus,

d F(x̄, z)

dt(x̄, z)
≥ αλ(x̄)

(
�c(x̄, z) + d�c(x̄, z)

dρ(x̄, z)
ρ(x̄, z)

)
.

Furthermore, by page 513 of Chiu and Larson (1985)

�c(x̄, z) − d(1 − �c(x̄, z))

dρ(x̄, z)
ρ(x̄, z) ≥ 0,

thus �c(x̄, z) + d�c(x̄,z)
dρ(x̄,z) ρ(x̄, z) ≥ 0. Hence, d F(x̄,z)

dt(x̄,z) ≥ 0.

Remark 2.1. There may exist z∗ ∈ arg min F(x̄, z) such that z∗ /∈ arg min t(x̄, z), but
there always exists z0 ∈ arg min t(x̄, z) such that F(x̄, z0) = F(x̄, z∗). Indeed, F(x̄, z∗) ≤
F(x̄, z) for all z ∈ N and if z∗ /∈ arg min t(x̄, z) there exists z0 ∈ N such that t(x̄, z0) <

t(x̄, z∗). By the proof of Theorem 2.1, F is non-decreasing in t(x̄, z). Then, F(x̄, z0) ≤
F(x̄, z∗). This implies F(x̄, z0) = F(x̄, z∗).
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The above theorem implies that if there exists a finite dominating set (FDS) D of
candidates to be optimal solutions for all the median problems (4), which is independent
of the filtering policy x, then D is also a FDS for Problem (3). Hence, the resolution of
Problem (3) reduces to solve a finite number of pure queuing problems:

min
x∈[0,1]n

F(x, z̄) for each z̄ ∈ D. (5)

Each one of these problems determines the optimal filtering policy x∗(z̄) associated with
a given location z̄. The optimal solution for Problem (3) is given by the location z∗ and
the policy x∗(z∗) where the minimum of F(x, z) is achieved.

On the other hand, Hakimi’s Theorem (see Hakimi, 1964) ensures that, for any
median problem on a network, there exists a node which is an optimizer. Therefore, by
applying Theorem 2.1 we can conclude that the set of nodes V is a FDS of candidates to
be optimal solutions for Problem (3). We next present an algorithm to solve the SFLMF
problem on a network N = (V, A).

Algorithm 2.1

Step 1.
For each fixed z̄ ∈ V , do:

Solve the pure queuing problem (5) with z̄ fixed.
Obtain the optimal filtering policy x∗(z̄) and the optimal value
F(x∗(z̄), z̄) := F∗(z̄).

Step 2.
Obtain min

z∈V
F∗(z) := F∗, z∗ ∈ arg min

z∈V
F∗(z) and x∗ = x∗(z∗).

A important task in the above algorithm is how to solve the pure queuing problem (5)
when the location z of the facility has been fixed. Carrizosa, Conde, and Muñoz (1998)
give procedures for solving the resulting pure queuing problem, which are an extension
of the well-known cµ-rule. These procedures enable the actual resolution of Problem
(5) by solving one unimodal one-dimensional optimization problem per each location z̄
fixed. Moreover, as shown in Hansen, Poggi, and Ribeiro (1991), for the case c = 1 it
is possible, using binary search techniques, to find an optimal solution for each z̄ fixed
with overall complexity O(n).

3. Efficiency of the SFLMF model

As we asserted in the introduction, the SFLMF problem is an extension of the c-SFLM
queuing-location problem, where both the facility location and the coverage rates of
requests coming from each node are decision variables. This is a very interesting extension
because even in very easy examples it improves the efficiency of the system (in both,
expected number of served demand and operating costs) with respect to the model with
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Figure 2. Network of Example 3.1.

the classical acceptance policy. An easy example illustrates this remark showing that
the improvement of the SFLMF model with respect to the c-SFLM model can even be
unbounded.

Example 3.1 Consider the SFLMF problem on the network N = (V, A) where V =
{1, 2, 3} and A = {(1, 2), (1, 3), (2, 3)}) depicted in figure 2. The requests are located
at the nodes of the network, and the distances between nodes appear on the edges. The
parameters of the problem are c = 1; α = β = ϑ = 1; wi = 0 for all i = 1, . . . , 3;
λ1 = 0.4, λ2 = 0.25, λ3 = 0.35; and r̂1 = k2, r̂2 = k + 1, r̂3 = k + 2.

In order to solve the 1-SFLM problem, the results in Frenk, Labbé, and Zhang (1993)
imply that an optimal location is obtained by finding the node z of V which minimizes
the average service time s((1, 1, 1), z). It is easily seen that the optimal location of the
1-SFLM problem is node 2 for any k ≥ 0. This is the solution when filtering policies are
not allowed.

Now, to obtain an optimal solution of the SFLMF problem, we just have to solve
three pure queuing problems (one for each node) using the approach earlier described in
Section 2. After some algebra one finds the optimal solution of the SFLMF problem at
the point (x∗, z∗) = ((1, 0, 0), 1) for all k ≥ 2. Then, let us compare the costs associated
with the optimal solutions of both problems. Since the expected total cost per unit time
is F̂(x, z) = ∑3

i=1 λi r̂i (1 − xi�1(x, z)) + �1(x, z)
∑3

i=1 λi d(i, z)xi we obtain:

F̂((1, 1, 1), 2) = (0.4k2 + 0.6k + 1.95)
0.4k + 0.35

0.4k + 1.35
(filtering not allowed),

F̂((1, 0, 0), 1) = 0.6k + 0.95 (filtering allowed),

thus,

lim
k→∞

F̂((1, 1, 1), 2)

F̂((1, 0, 0), 1)
= +∞.

This shows that drastic reductions in costs can be obtained if filtering policies are allowed.
In addition, although with the filtering policy the percentage of covered population is
reduced (in this example only the requests from node 1 are considered, which represents
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a coverage of a 40% of the overall requests), the population that receives service in-
creases. In fact, since the expected number of requests that receive service per unit time
is

∑3
i=1 λi xi�1(x, z), the expected proportion of the total demand to be served is:

�1((1, 1, 1), 2) = 1

1.35 + 0.4k
(filtering not allowed),

0.4�1((1, 0, 0), 1) = 0.4 (filtering allowed)

and it is straightforward to see that 1
1.35+0.4k < 0.4 for all k ≥ 3. This simple example

shows how in order to improve the use of the resources it is sometimes convenient to
perform a selection of the population to cover. In this particular case, the efficiency of
the system is optimized considering only the requests in node 1.

Summarizing, this section shows how the use of filtering policies improves the
throughput of this queuing-location demand-responsive system. Nevertheless, this fact
cannot be taken as a recommendation for the implementation of these policies in all the
cases due to the percentage of uncovered population, even when filtering policies imply
a reduction on the overall costs and an increase in the served demand. These policies can
only be implemented, when they are used for emergency services, provided that backup
systems are available. On the other hand, if a filtering policy is found to be optimal in a
situation and a backup system does not exist it would be advisable to perform a trade off
analysis. The goal of this analysis would be to determine whether or not to implement
the backup system in order to globally save resources when combined with the filtering
policy. Assume that (x∗, z∗) is the optimal solution of Problem (3) and (1, ẑ) is the
optimal solution for the c-SFLM model. The saving S achieved using (x∗, z∗) instead of
(1, ẑ) during a planning horizon of T time units would be S = T (F̂(1, ẑ) − F̂(x∗, z∗)).
Therefore, any amount of money smaller than S could be invested either to implement
or to improve the backup service and still the whole system would save money.

Finally, we would like to notice the technical advantages of filtering policies: by
using Bernouilli filters the fundamental behavior of the system does not change which
allows to use standard queuing techniques. Indeed, dynamical policies would be prefer-
able if appropriate techniques to handle them were available. As we mentioned before
the strategy that consists of discretizing time and repeatedly solving the filtering model
can be taken as an approximation to more general dynamic policies.

4. The model with two service centers

Our experimental results show that the filtering policy used by the one service center
model is efficient in economic terms and in percentage of served demand. However,
its social impact may be unacceptable due to the proportion of uncovered demand.
Table 1 shows that this proportion ranges between 16.8% and 26.1% in the experi-
ments that we have performed. This justifies the interest on new models that allow
requests selection while ensuring full coverage as well. The simplest model for this is a
two service centers system in which filtering policies are used. These filtering policies
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Table 1
Comparison between models without and with filtering policy.

c-SFLM SFLMF TFLMF

n c1, c2 o. f.
value

% served
demand

% cost
reduction

% population
coverage

% served
demand

% cost
reduction

% served
demand

10 1, . . . , 5 3497.94 65.17 8.54 83.13 67.68 72.86 85.41
20 4, . . . , 8 7462.81 65.29 12.92 81.78 68.75 77.11 86.14
30 8, . . . , 12 11256.81 66.03 14.55 80.12 70.37 78.69 89.69
50 14, . . . , 18 18144.32 68.37 16.40 82.04 73.45 79.44 90.51

100 31, . . . , 35 38546.37 66.27 18.31 79.13 72.79 78.33 92.88
200 91, . . . , 95 95445.34 61.36 18.19 73.88 69.56 74.33 94.53

establish the proportions of i-requests to be covered by the main service center. The
secondary service center assumes the remaining proportions of requests rejected by
the main service center due to the filtering policy. Notice that in this model requests
belonging to covered proportions that find the main service center busy are not delivered
to the secondary service center, they are simply lost by the whole system. Therefore,
this analysis separates each input stream into two different ones according to a “a priori”
Bernouilli random variable. One of them goes to the main service center and the other
to the secondary service center.

In this section, we consider the location of two service centers with c j j = 1, 2
service units respectively, embedded in a transportation network N = (V, A), where
requests come from the nodes of N (|N | = n). In what follows, we refer to the main
service center as indexed by j = 1 and to the secondary service center as indexed by
j = 2. We denote by w

j
i ≥ 0 the mean time of on-scene service of i-requests, served

in service center j with j = 1, 2. If the service center j is located at z j , the expected
service time of an i-request served in service center j is s j

i (z j ) = w
j
i + βd(i, z j )/ϑ .

Any i-request that is served in service center j induces a cost to the system proportional
to the travel time given by r j

i (z j ) = α jβd(i, z j )/ϑ . Any request that arrives to the main
or to the secondary service center when all the service units are busy is lost. Any lost
i-request in the main or in the secondary service center induces a cost r̂i ≥ 0.

The decision variables are z j and xi , with j = 1, 2 and i = 1, . . . , n. z j is the
location for service center j and each xi stands for the proportion of i-requests that are
covered by the main service center. Therefore, 1 − xi is the proportion of i-requests
that are covered by the secondary service center. The goal is to find the locations z j for
j = 1, 2 of the two facilities and the proportions x = (x1, . . . , xn) that minimize the
expected total cost per unit time.

4.1. Analysis of the model

Since the filtering variables x = (x1, . . . , xn) are anticipated and stationary, if z j ∈ N
and x ∈ [0, 1]n are fixed the queuing system of each service center j behaves as a
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M/G/c j/c j queue with arrival rate λ j (x), mean service time s j (x, z j ) and throughput
ρ j (x, z j ) = λ j (x)s j (x, z j ) given by

λ1(x) =
n∑

i=1

λi xi , λ2(x) =
n∑

i=1

λi (1 − xi ),

s1(x, z1) =
n∑

i=1

λi xi

λ1(x)
s1

i (z1), s2(x, z2) =
n∑

i=1

λi (1 − xi )

λ2(x)
s2

i (z2) and

ρ1(x, z1) =
n∑

i=1

λi xi s
1
i (z1) ρ2(x, z2) =

n∑

i=1

λi (1 − xi )s
2
i (z2).

Again, the validity of this stochastic model is based on a well-known property:
the result of filtering a Poisson process by a Bernouilli random variable results in two
independent Poisson processes.

Let �
j

c j (x, z j ) denote the probability that not all the service units in service center
j are busy. It is well-known (see e.g., Medhi, 1991) that in our model

�
j

c j (x, z j ) = 1 − ρ j (x, z j )c j
/c j !

∑c j

k=0ρ
j (x, z j )k/k!

for j = 1, 2.

The expected total cost per unit time is the sum of the operating cost of the served plus
the lost requests. The expected number of i-requests that are served per unit time by
the main service center is λi xi�

1
c1 (x, z1) and the expected number of i-requests that are

served per unit time by the secondary service center is λi (1− xi )�2
c2 (x, z2). The expected

number of lost i-requests per unit time in both, the main and secondary service centers, is
λi xi (1−�1

c1 (x, z1))+λi (1−xi )(1−�2
c2 (x, z2)); therefore the expected cost per unit time is:

�1
c1 (x, z1)

n∑

i=1

λi xi (r
1
i (z1) − r̂i ) + �2

c2 (x, z2)
n∑

i=1

λi (1 − xi )(r
2
i (z2) − r̂i ) +

n∑

i=1

λi r̂i . (6)

Since the term
∑n

i=1 λi r̂i does not depend on the decision variables (x, z) one can consider
equivalently the following objective function for the model:

F(x, z) =
2∑

j=1

�
j

c j (x, z j )(r j (x, z j ) − r̂ j (x)) (7)

where, r1(x, z1) = ∑n
i=1 λi r1

i (z1)xi , r2(x, z2) = ∑n
i=1 λi r2

i (z2)(1 − xi ), r̂1(x) =∑n
i=1 λi r̂i xi , and r̂2(x) = ∑n

i=1 λi r̂i (1 − xi ).

Therefore the model is formulated as:

min
x∈[0,1]n,z j ∈N

F(x, z) =
2∑

j=1

F j (x, z j ) (8)

being, F j (x, z j ) = �
j

c j (x, z j )(r j (x, z j ) − r̂ j (x)) for j = 1, 2.
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Figure 3. Objective function of Problem (13) for n = 2 and c1 = c2 = 1.

Hereafter we will call this problem the Two-Facilities-Loss-Median model with
Filtering (TFLMF). The function F is sum of two fractional functions where none of
them has good structural properties: (1) they are quotient of non-linear functions; (2) in
general they are neither convex nor monotone (figure 3 represents the objective function
F for z1 and z2 fixed) and; (3) they are not differentiable with respect to the location
variables.

These reasons do not permit the use of standard optimization methods and lead us
to exploit some properties of the problem on its locational aspect. We will prove that
there exists a finite set of candidates for optimal solutions in the location variables. Thus,
this reduces the problem to solve the allocation subproblem for each candidate location
and to choose the best solution found.

5. Localization results and solution procedure for the TFLMF problem

In this section we derive localization results for the TFLMF model. For each fixed
x̄ ∈ [0, 1]n , we observe that the TFLMF problem can be separated into two subproblems:

min
z1∈N

F1(x̄, z1) = �1
c1 (x̄, z1)(r1(x̄, z1) − r̂1(x̄)). (9)

and,

min
z2∈N

F2(x̄, z2) = �2
c2 (x̄, z2)(r2(x̄, z2) − r̂2(x̄)). (10)
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Each one of the these subproblems is a SFLMF problem for a fixed x̄ ∈ [0, 1]n . Therefore,
they can be solved independently. Indeed, as we did in Section 2 we can introduce the
two following auxiliary problems for each fixed x̄ ∈ [0, 1]n:

min
z1∈N

t1(x̄, z1) := (β/ϑ)
n∑

i=1

λi x̄i

λ1(x̄)
d(i, z1), (11)

min
z2∈N

t2(x̄, z2) := (β/ϑ)
n∑

i=1

λi (1 − x̄i )

λ2(x̄)
d(i, z2), (12)

where the objective functions t1(x̄, z1) and t2(x̄, z2) are, respectively, the expected travel
time for the feasible solution (x̄, z1) of Problem (9) and for the feasible solution (x̄, z2)
of Problem (10). Problems (11) and (12) are Weber or median problems on a network
N = (V, A) with respect to the set of existing facilities placed at the nodes of N . Similarly
to Section 2, we prove in the next theorem that an optimal solution of Problem (8) can
be obtained by combining the minimizers of t1(x̄, z1) with the minimizers of t2(x̄, z2).

Theorem 5.1. Let x̄ be a nonzero vector in [0, 1]n . If z1∗ solves Problem (11) and z2∗

solves Problem (12) then, (z1∗, z2∗) solves the problem minz1∈N ,z2∈N F(x̄, z1, z2).

Proof. Once F(x̄, z1, z2) can be separated into F1(x̄, z1) and F2(x̄, z2) the proof runs
parallel to the one of Theorem 2.1.

Hakimi’s Theorem (see Hakimi, 1964) together with Theorem 5.1 ensure that V ×
V is a FDS for Problem (8). We will use this result to give a procedure for solving
Problem (8).

Next, we consider the following problem for each fixed z̄1 and z̄2:

min
x∈[0,1]n

F(x, z̄1, z̄2) = F1(x, z̄1) + F2(x, z̄2) (13)

Problem (13) is a nonlinear programming problem with linear constrains and dif-
ferentiable in (0, 1)n but with non convex objective function (see figure 3). The objective
function F(x, z̄1, z̄2) is sum of two fractional non-linear functions. These functions are
well-known to be extremely hard to optimize. There exist several methods adapted to
solve problems of this kind when the two terms of the sum are the ratio of linear functions
(see e.g., Schaible, 1995). However, as far as we know no methods have been proposed in
the literature for the general case. This fact leads us to develop “ad hoc” optimization ap-
proaches for the variable x minimization phase. These approaches, which are described in
the Appendix, are heuristic procedures that provide approximated solutions for Problem
(13). Thus, we reduce the resolution of the TFLMF problem to an enumeration scheme
over the elements in the FDS V × V .



FILTERING POLICIES IN LOSS QUEUING NETWORK LOCATION PROBLEMS 273

Remark 5.1. Let x∗ be the optimal solution of Problem (13).Then, x∗ verifies the neces-
sary optimality condition:

∇F(x∗, z̄1, z̄2)′d ≥ 0, ∀ d feasible direction at x∗.

Let us assume that 0 < x∗
k < 1, that is the kth component is fractional. Then, ek and −ek

are feasible directions at x∗. Therefore, ∇k F(x∗, z̄1, z̄2) = 0. The reader can check that
this conditions is equivalent to:

(λ̂1 · x∗)�̂ ′
c1 (ρ̂1 · x∗)ρ̂1

k − (λ̂2 · (1 − x∗))�̂ ′
c2 (ρ̂2 · (1 − x∗))ρ̂2

k

= �̂c2 (ρ̂2 · (1 − x∗))λ̂2
k − �̂c1 (ρ̂1 · x∗)λ̂1

k,

where for j = 1, 2 we denote ρ̂j = (ρ̂ j
i )1≤i≤n, ρ̂

j
i = λi s

j
i (z̄ j ); λ̂j = (λ̂ j

i )1≤i≤n, λ̂
j
i =

λi (r
j

i (z̄ j ) − r̂i ); and �̂c j (t) = 1 − t c j
/c j !

∑c j

i=0 t i / i!
.

Consider the following linear equation in the variables y1, y2, y3, y4:

(λ̂1 · x∗)�̂ ′
c1 (ρ̂1 · x∗)y1 − (λ̂2 · (1 − x∗))�̂ ′

c2 (ρ̂2 · (1 − x∗))y2

= �̂c2 (ρ̂2 · (1 − x∗))y3 − �̂c1 (ρ̂1 · x∗)y4. (14)

Since the coefficients of (14) do not depend on k the vector (ρ̂1
l , λ̂1

l , ρ̂
2
l , λ̂2

l ) associated with
any other fractional component x∗

l of x∗ must fulfill the same linear equation (14). Thus,
(ρ̂1

k , λ̂
1
k, ρ̂

2
k , λ̂

2
k) and (ρ̂1

l , λ̂1
l , ρ̂

2
l , λ̂2

l ) must belong to the same linear variety. Notice that
this arguments shows that having two fractional components in an optimal filtering policy
x∗, although possible, is rather rare. This coincides with our computational experiments
where we never found more than one fractional component in any optimal solution.

In addition, we can obtain lower and upper bounds for Problem (13). Indeed, if
x1∗ is the optimal solution to the pure queuing problem, minx∈[0,1]n F1(x, z̄1) and x2∗

is the optimal solution to the pure queuing problem, minx∈[0,1]n F2(x, z̄2) we obtain the
following inequalities:

F1(x1∗, z̄1) + F2(x2∗, z̄2) ≤ min
x∈[0,1]n

F(x, z̄1, z̄2) ≤ min{F(x1∗, z̄1, z̄2), F(x2∗, z̄1, z̄2)}

Then, F(z̄1, z̄2) := F1(x1∗, z̄1) + F2(x2∗, z̄2) is a lower bound for Problem (13) and
F̄(z̄1, z̄2) := min{F(x1∗, z̄1, z̄2), F(x2∗, z̄1, z̄2)} is an upper bound for Problem (13).
Thus, these bounds are used to reduce the search space in the following branch and
bound procedure:

Procedure

Initialization.

Incumbent=+∞
(z1∗, z2∗) = (0, 0)
For z ∈ V obtain F1(x1∗, z) and F2(x2∗, z)
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Steps.

For (z1, z2) ∈ V × V do :

Evaluate F(z1, z2) and F̄(z1, z2)
If F̄(z1, z2) < Incumbent {

Incumbent := F̄(z1, z2)
(z1∗, z2∗) := (z1, z2)

}
If F(z1, z2) < Incumbent {

Solve Problem (13) for (z1, z2) fixed.
Let F∗(z1, z2) be the objective value
If F∗(z1, z2) <Incumbent {

Incumbent:= F∗(z1, z2)
(z1∗, z2∗) := (z1, z2)

}
}

EndFor

6. Computational experience

We have run a series of computational experiments to evaluate the performance of the
proposed models and to show how to use them as a tool for strategic decision making.
Since no benchmark instances for these problems can be found in the literature, we have
generated a battery of test problems. Problems correspond to planar graphs randomly
generated with the LEDA library (see Mehlhorn and Näher, 1999). We assume that
demand points are located at the nodes of the network. Thus, for each instance the
number of admissible locations is n for the model with one service center and n2 for the
model with two service centers. Problems are divided into six groups of ten problems
each one according to the number of nodes n. The considered values for n are 10, 20, 30,
50, 100, 200. For each problem we have considered 5 different values of service units,
both for the primary and the secondary service centers. The range of values is the same
for all problems of the same size, and for the two service centers. The ranges are depicted
under the column “c1, c2” in Table 1. They have been set so that the expected proportion
of overall demand served by the system in the c-SFLM model is approximately 65%.
Thus, for each generated problem 25 instances have been considered for the different
combinations of the number of service units in each service center. This gives a number
of 250 instances for each size n so that in total we have solved 1500 instances. The other
parameters of the problems are the following:

1. λi for i = 1, . . . , n randomly generated in (0, 1).

2. w
j
i = 0 for i = 1, . . . , n; j = 1, 2.

3. The distances between nodes are randomly generated in [100, 5000]
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4. α1 = 3, α2 = 1; β = 2; ϑ = 50.

5. r̂i for i = 1, . . . , n randomly generated in [1000, 2000].

Programs have been coded in FORTRAN and executed in a DELL Inspiron 8100UT
PC with a Mobile Pentium III processor at 1 GHz and RAM 128 Mb of RAM.

6.1. Comparison of the two models

First of all, note that there is no real trade-off between filtering policies and location
variables. Recall that there is a finite number of candidates to optimal locations and, for
each potential location, we know how to obtain the optimal filtering policy. Thus, there
are no conflicting objectives in our problem which means that, in the considered models,
neither the location nor the filtering decision variables play a leading role.

In addition, in these models we can draw no conclusion on where filtering occurs
more. Indeed, this would depend on the cost structure, which in our case depends on
various elements and not only on the distance of clients from optimal locations. It is
worth noting that rejection costs are an important component of the cost function in our
models. Imposing adequately high rejection cost on different types of clients one could
force filtering to spread in many different ways among the nodes of the network.

For these reasons our computational experiments are devoted to compare objective
function value and percentage of served demand in the two models. The first series of
experiments refer to the one service center problem and is oriented to compare the models
without and with the filtering policy. The average results for each group of problems
are depicted in Table 1 in the columns under the heading “c-SFLM” and “SFLMF”,
respectively.

Column “o.f. value” gives the objective function value for c-SFLM. Column “%
cost reduction” under the heading “SFLMF” gives the percentage of reduction in the
objective function value when the filtering policy is applied. As was expected the use of
a filtering policy results in a reduction of the operating costs with respect to c-SFLM.
However, in the “c-SFLM” the covered demand is 100% and thus, the use of a filtering
policy also results in a reduction of the overall covered demand. This loss in the equity
of the system is a collateral effect that needs to be considered. To this end, Column
“% population coverage” gives the values of the overall covered demand. Nevertheless,
notice that to cover more population does not imply to serve more demand. Recall that
covered demand is the percentage of demand that is not excluded by the filtering policy
while served demand is the demand actually served by the system. The latter can be lower
because of busy periods of the service units. This fact can be seen in Columns “% served
demand” under the headings “c-SFLM” and “SFLMF”, which represent the percentage
of served demand in each model. As can be seen the percentage of served demand in
SFLMF is always higher than in c-SFLM. The explanation for this is given by the value
of the function �c(·, ·), which represents the probability of finding free service units.
In the experiments we have performed this probability ranges between 0.61 and 0.68
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Figure 4. Cost reduction with respect to the c-SFLM model.

Figure 5. Percentage of served demand.

in c-SFLM, whereas in SFLMF it ranges between 0.8 and 0.94. Then, we can conclude
that SFLMF performs a selection of the population in order to improve the efficiency
of the system, resulting in a reduction in the operating costs together with an increase
in the number of served demand (see figures 4 and 5). However, the use of a filtering
policy might be unacceptable in terms of the proportion of uncovered demand. The two
service centers model solves this problem since it recovers full coverage. In addition,
the percentage of served demand with TFLMF (Column % served demand under the
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Table 2
Comparison between methods for the TFLMF model.

ORD FEAS

n v1 N1 g1 t1 v2 N2 g2 t2

10 962,58 65,02 19,89 0,0021 949,39 64,70 19,51 0,0588
20 1790,34 250,61 21,84 0,1353 1708,32 246,25 21,03 0,5736
30 2525,78 562,69 25,10 0,1766 2399,35 553,68 24,65 1,6636
50 3838,34 1487,34 29,28 0,3693 3729,85 1474,97 29,63 7,3105
100 9057,40 3907,53 28,23 2,2546 8354,92 3722,32 27,50 39,5486
200 26187,99 4840,35 24,10 10,4279 24503,83 5081,30 26,21 137,3010

heading “TFLMF”) increases by a factor that ranges between 1.3 for n = 10 and 1.6 for
n = 200, with respect to c-SFLM. On the other hand, Column “% cost reduction” under
the heading “TFLMF” gives the percent reduction in the objective function value with
respect to c-SFLM. As can be seen this reduction ranges between 72.8% for n = 10 and
79.4% for n = 50. In conclusion, we can assert that TFLMF improves the efficiency of
the system with respect to the one service center models (in both, operating costs and
percentage of served demand as we can see in figures 4 and 5) while covering the overall
demand. Thus, the decision-maker should perform a trade-off analysis in order to decide
whether or not implement the two service centers model with the filtering policy taking
into account on the one hand, the installation cost of the second service center; and on
the second hand, the reduction in operating costs and the increase of the percentage of
served demand.

Table 2 shows the average results obtained in the optimization of the TFLMF
problem. Columns are divided into two blocks. The first block refers to the ordering
based method (ORD) and the second one corresponds to the feasible direction method
(FEAS) (see Appendix). For each method l = 1, 2 (l = 1 represents ORD, l = 2
represents FEAS), four values are reported: vl is the objective function value, Nl is
the number of subproblems solved (i.e. the number of subproblems that could not be
fathomed by bounding), gl the gap with respect to the lower bound in percentage, and
tl the CPU time in seconds. Note that the gaps range between 19.5% and 29.6%. The
reason for these high values is that the gaps have been computed with respect to the lower
bound, which is very rudimentary. Note also that the best solutions provided by the two
different methods need not correspond with the same location for the service centers.
This explains that better values for the objective function do not always correspond with
smaller gaps, since the gap depends not only on the objective function value, but also on
the value of the lower bound on the node (which, in turn, depends on the location of the
service centers.)

As can be seen, in terms of the objective function value the feasible direction method
outperforms ORD for problems of all sizes, although the values obtained with ORD are
nearly as good as those of FEAS. In terms of the required times, the times of ORD are
smaller than those of the FEAS. Nevertheless, although the times needed by FEAS are
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higher than those of ORD they are still small for the sizes of the considered instances.
Therefore, from an overall point of view we can not decide which is the method that has
obtained the best results. On the other hand, although we cannot ensure optimality, our
experiences with some small-size problems solved exactly suggest that our local optima
obtained by FEAS are also global.

Finally, to get further insight on the performance of each of the considered models
we have arbitrarily selected one 30 nodes instance and observed the obtained results
as the total number of service units varies from 1 to 30. For a fixed value for the total
number of service units, say c, the results for TFLMF correspond to averages over all

Figure 6. Percentage of served demand for n = 30.

Figure 7. Cost reduction with respect to the c-SFLM model for n = 30.
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combinations of service units in the primary and secondary service centers that add up to
c. Figure 6 shows the percentage of the overall demand served with each model, whereas
figure 7 shows the costs of SFLMF and TFLMF, evaluated in percentage relative to the
cost of c-SFLM. First, observe that with the considered numbers of service units, the
percentage of the overall demand served by c-SFLM nearly gives the full range, since
it varies from 5.43 for c = 1 to 99.82 for c = 30. As was expected, from figures 6
and 7 we can see that as the number of service units increases the two models with
one service center tend to be behave similarly. Indeed, as the number of service units
increases the optimal filtering policy is to cover all requests (x = (1, . . . , 1)) so that
c-SFLM and SFLMF are the same model. Figure 6 also shows that for c < 20 the models
with filtering policies are preferable to c-SFLM, in terms of the percentage of the overall
demand served. Note that for c ≥ 20 c-SFLM serves at least 90.48% of the demand so,

Table 3
Trade-off between savings and % of served demand.

c % served demand Savings

1 13.45 0
2 19.61 2007.24
3 26.27 3639.57
4 31.14 4809.76
5 36.35 5855.54
6 41.54 6891.23
7 46.68 7907.45
8 51.58 8886.70
9 55.78 9782.34

10 59.56 10630.33
11 62.87 11358.77
12 66.06 11982.87
13 69.43 12568.72
14 72.62 13134.98
15 75.10 13743.66
16 78.83 14369.56
17 81.90 14978.84
18 84.43 15504.00
19 87.43 15999.10
20 89.55 16441.05
21 92.39 16852.35
22 94.51 17247.60
23 96.00 17571.27
24 97.17 17825.09
25 98.05 18017.25
26 98.70 18157.47
27 99.15 18255.97
28 99.45 18322.57
29 99.65 18365.90
30 99.78 18393.06
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from a practical point of view, there is really no need to implement any policy to improve
the performance of the system in terms of the served demand. For c < 10, we can see
that SFLMF and TFLMF serve approximately the same percentage of demand, but from
10 ≤ c ≤ 20 the percentage of demand served by TFLMF improves that of SFLMF. It
is worth mentioning that, in any case, for c < 10 the percentage of demand served with
any of the models does not reach 60%, so the number of service units is not enough as
to give an “acceptable” service with any of the models. When we analyze the results
in terms of the cost function, again the two models with filtering policy behave better
than c-SFLM. This is specially true for TFLMF where for all the considered numbers of
service units, the value of the cost function is considerably smaller than that of c-SFLM
(and also smaller than that of SFLMF excepting for c = 2, 3). If we just consider the
values of c < 20, the percent reduction of the cost function value with respect to c-SFLM
ranges from 9.13% for c = 2 to 53.62% for c = 20. If we consider higher values of c
this percent reduction further increases up to 60.5% for c = 30, although in this case a
trade off analysis would be desirable given that, as it has been pointed out before, the
percent of the served demand is slightly higher for c-SFLM than for TFLMF. Therefore,
from figures 6 and 7 we can conclude that when c-SFLM is not capable of serving an
acceptable percentage of the total demand, filtering policies really pay off since they
improve the percentage of the served demand and result in a considerable reduction of
the cost function.

6.2. Analysis of results for strategic decision making

We next illustrate how to use optimal filtering policies to make decisions on the parame-
ters of the system for SFLMF. A similar analysis applies to TFLMF. We consider again

Figure 8. Operating costs and % of served demand.
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the 30 nodes instance of figures 6 and 7. Table 3 shows the price that could be invested
per unit time to have additional service units, in order to increase the percentage of
served demand. Row i of column “Savings” gives the difference of the optimal operating
cost between the systems with one and i service units. Note that it is not surprising that
the saving increases with the number of service units since loss queuing models do not
consider facility set-up costs. Thus, the costs of the system decrease when the number
of service units augment since the percentage of served demand increases. Finally, fig-
ure 8 depicts the optimal operating cost and their associated percent of served demand
for different values of unit service units. Thus, it can be used as a managerial tool to
decide on the number of service units in order to ensure a given percentage of served
demand.

7. Conclusions

This paper studies the influence of filtering policies on loss-network-queuing location
problems. When one single service center is considered and filtering policies are al-
lowed we prove results that show that the efficiency of the system can be improved while
maintaining localization properties similar to those of the model without filtering policy.
However, the social impact of applying filtering policies can be unacceptable due to
the proportion of uncovered demand. This fact justifies the study of a new model that
allows the use of filtering policies but guarantees full coverage of demand by adding a
secondary service center that assumes the requests not covered by the primary service
center. The resolution of these problems uses: (1) the existence of a FDS for an asso-
ciated median problem on the network; and (2) the optimal admission policy of a two
service centers loss-queuing model with filtering. We have tested two different methods
to solve the above mentioned queuing problem. Combining these two facts, we give a
branch and bound scheme that allows solving the location problem in the above settings
by enumeration. The results of the computational experiments on a set of randomly gen-
erated problems confirm that the new model, in addition to recovering full coverage of
demand, leads to an improvement of the efficiency of the system in both, reduction of the
operating costs and increase of the percentage of served demand. This performance is
not surprising since classical acceptance policies are particular cases of filtering policies.
Within this framework our work is a step towards handling more realistic queuing location
problems.

Although we have limited our study to the case where customers are placed at
the nodes of a network, the results presented here can be extended to different spatial
distributions of customers. Another possible extension of the TFLMF model is to consider
a system with J > 2 facilities where the filtering would decide the proportion of requests
to be served by each of the facilities. Finally, it would be interesting to study the extension
of the model to include the determination of the required number of service units which
will imply to introduce additional decision variables.
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Appendix

We have tested two different procedures for solving the pure queuing Problem (13). The
first one is a simple method based on the ordering of the variables. The second one is the
iterative procedure that results from applying the reduced gradient method to Problem
(13).

We denote by x j
i the proportion of i-requests assigned to service center j .

Ordering based method

The optimal solution of the pure queuing problem with one service center is obtained by
considering the ordering φi (z) = si (z)/(r̂i − ri (z)) (see Carrizosa, Conde, and Muñoz,
1998). Thus, φ gives a measure of the adequacy of requests to the service center at z.
When the problem is extended to the case of two service centers we have two measures,
one for each center. These measures provide us with two different orders (one over each
service center) that may be used to allocate requests on each center. By doing this we
use the same rationale behind Johnson’s algorithm for the flow-shop problem with two
machines (see Johnson, 1954). Let φi (z j ) be the function that evaluates the adequacy of
assigning request i to service center at z j . We order decreasingly the values φi (z j ), with
i = 1, . . . , n and j = 1, 2 in a single list L . At each step, the procedure selects the first
value φi (z j ) from L and assigns completely request i to service center z j . Then, the list
is updated by deleting from it the two pairs corresponding to request i . The procedure
continues until the list is empty. In practice, this procedure can be implemented as follows:

Initialization.
x j

i = 0, i = 1, . . . , n, j = 1, 2.

For i = 1, . . . , n do
Evaluate φi (z1) and φi (z2)
If φi (z1) ≤ φi (z2) then (x1

i := 1)
else (x2

i := 1)

EndFor

Feasible direction method

It is the iterative procedure that results from applying Wolfe’s reduced gradient method
(see Bazaraa, Sherali, and Shetty, 1993) to Problem (13). Let xc denote the current point
and S = [0, 1]n be the feasible domain. The maximum descent feasible direction at xc

can be found by solving:

min
x∈S

∇ f (xc)(x − xc) = −∇ f (xc)xc + min
x∈S

∇ f (xc)x.
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The solution to this problem is given by:

xi =
{

1 if ∇i f (xc) ≤ 0

0 otherwise
.

Hence, the descent direction d at xc is:

di =
{

1 − xc
i if ∇i f (xc) ≤ 0

−xc
i otherwise

.

The step size is obtained by applying line search along the above descent direction. We
take as initial point x∗ such that F(x∗, z̄1, z̄2) = min{F(x1∗, z̄1, z̄2), F(x2∗, z̄1, z̄2)}, where
x1∗ and x2∗ are the optimal solutions of the pure queuing problem minx∈[0,1]n F1(x, z̄1)
and minx∈[0,1]n F2(x, z̄2), respectively.
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